Modified and extended Ducci sequences and their inner patterns

Zoltán Galántai

1. Summary

A Ducci sequence can be interpreted as a subset of a broader category where not only the $a<b<c<d$ order is allowed, but all of the possible order of the positive integers with different sizes. They are called "modified Ducci sequences". Similarly, the notion of the "extended Ducci sequences" can be introduced adding one or more elements to the original, four-component Ducci sequence in ascending order (e.g. $\mathrm{a}<\mathrm{b}<\mathrm{c}<\mathrm{d}<\mathrm{e}$).

Conjectures about modified Ducci sequences:

There are only some possible repeating patterns for the modified Ducci sequences (e.g. for an "a,b,d,c" order). Besides the " $0,0,0,0$ " version (this is the repeating pattern of the original Ducci sequences) only the next ones exist where " a " is a positive integer:

- $a, 0, a, 0$
- "a, 2a, a, 0
- $0, a, 0, a$
- 2a, a, 0, a"

There is not any other possible pattern in the case of an extended, four-component Ducci sequence and probably this is true for any four positive integers.

Conjectures about extended Ducci sequences:

Next to the original Ducci sequence, there is one and one version where the repeating pattern consists only zeros: it is an extended version with 8 starting numbers.
Extended Ducci sequences with more than 8 starting numbers never end in repeating cycles although they have some more or less regular patterns with different numbers.

2. Modified Ducci sequences and their repeating patterns

According to the definition of Ducci sequences, writing down four integers in ascending order, and calculating the absolute value of them $(a-b, b-c, c-d, d-a)$, the results will iterate to $0,0,0,0, e . g$. :

Differences of absolute values:

step	numbers	
0.	$2,5,7,13$	(starting sequence)
1.	$3,2,6,11$	
2.	$3,1,3,7$	
3.	$2,2,4,4$	
4.	$0,2,0,2$	
5.	$2,2,2,2$	
6.	$0,0,0,0$	(repeating pattern)

A Ducci sequence can be described as numbers arranged in a square.

Four numbers (a, b, c, d) have 24 different arrangements, but as this illustration can show, the a, b, c, d arrangement is equivalent to three others: $a b c d=b c d a=c d a b=d a b c$
So we can categorize all the possible arrangements:

1	$\mathbf{2}$	3	4
1. $a b c d=$	$b c d a=$	$c d a b=$	$d a b c$
2. $a b d c=$	$b d c a=$	$d c a b=$	$c a b d$
3. $a c b d=$	$c b d a=$	$b d a c=$	$d a c b$
4. $a \operatorname{cdb}=$	$c d b a=$	$d b a c=$	$b a c d$
5. $a d b c=$	$d b c a=$	$b c a d=$	$c a d b$
6. $a d c b=$	$d c b a=$	$c b a d=$	$b a d c$

Thus, "a b c d" is Ducci 1.1; "b c d a" is Ducci 1.2, etc. However, this does not mean that the repeating patterns are the same for the subcategories of the main categories (e.g. for 2.1 and 2.2; see below).

Results after 100,000 random number combinations (here and later: with randomly chosen numbers between 1 and 100; the combinations with two or more equal numbers were omitted):

Distributions of repeating parts:

[a]

$1.1(a b c d)$	A: 100000	B: 0	C: 0	D: 0	E: 0
$1.2(b c d a)$	A: 100000	B: 0	C: 0	D: 0	E: 0
$1.3(c d a b)$	A: 100000	B: 0	C: 0	D: 0	E: 0
$1.4(\mathrm{dabc})$	A: 100000	B: 0	C: 0	D: 0	E: 0
$2.2(b c d a)$	A: 100000	B: 0	C: 0	D: 0	E: 0
$2.3(c d a b)$	A: 100000	B: 0	C: 0	D: 0	E: 0
$2.4(d a b c)$	A: 100000	B: 0	C: 0	D: 0	E: 0
$6.1(a d c b)$	A: 100000	B: 0	C: 0	D: 0	E: 0
$6.2(d c b a)$	A: 100000	B: 0	C: 0	D: 0	E: 0
$6.3(c b a d)$	A: 100000	B: 0	C: 0	D: 0	E: 0
$6.4(b a d c)$	A: 100000	B: 0	C: 0	D: 0	E: 0

[b]					
2.1 ($\mathrm{b}^{\text {d d c }}$)	A: 1618	B: 73028	C: 25354	D: 0	E: 0
3.2 (c b d a)	A: 1446	B: 62652	C: 35902	D: 0	E: 0
5.1 ($\mathrm{d} \mathrm{b} \mathrm{c}^{\text {) }}$	A: 1707	B: 80316	C: 17977	D: 0	E: 0
[c]					
3.1 (c b d)	A: 1801	B: 0	C: 0	D: 80254	E: 17945
4.1 (c d b)	A: 1768	B: 0	C: 0	D: 78789	E: 19443
5.4 (a d b)	A: 1445	B: 0	C: 0	D: 62829	E: 35726

[d]

$3.3(\mathrm{~b} \mathrm{~d} \mathrm{a} \mathrm{c)}$	A: 3815	B: 0	C: 0	D: 0	E: 96185
$4.3(\mathrm{~d} \mathrm{~b} \mathrm{a} \mathrm{c)}$	A: 6237	B: 0	C: 0	D: 0	E: 93763
$5.2(\mathrm{~d} \mathrm{~b} \mathrm{c} \mathrm{a)}$	A: 8925	B: 0	C: 0	D: 0	E: 91075

[e]					
3.4 (d a c b)	A: 8763	B: 0	C: 91237	D: 0	E: 0
4.2 (c d b a)	A: 2024	B: 0	C: 97976	D: 0	E: 0
4.4 (bac d)	A: 1981	B: 0	C: 98019	D: 0	E: 0
5.3 (b c a d)	A: 3810	B: 0	C: 96190	D: 0	E: 0
Explanation of symbols:		e.g.:			
$A=0,0,0,0$		0,0,0,0			
$B=a, 2 a, a, 0$		1,2,1,0			
$C=a, 0, a, 0$		3,0,3,0			
$D=2 \mathrm{a}, \mathrm{a}, 0, \mathrm{a}$		4202			
$\mathrm{E}=0, \mathrm{a}, 0, \mathrm{a}$		0303			

Notice that all the Ducci-1 and Ducci-6 versions end only in the " $0,0,0,0$ " pattern - similarly to the Ducci-2.2; Ducci-2.3 and Ducci-2.4 [a]. This is almost half (11) of the 24 Ducci-versions. The second most frequent distribution regarding the endings is [e]. This represents only the $1 / 6^{\text {th }}$ of the appearing variations (Ducci-3.4; Ducci-4.2; Ducci-4.4 and Ducci-5.3); and the rest is divided proportionally between three other variations ([b], [c], [d]). However, there is no a Ducci version where the endings proportionally distributed between A and B; or A, and B, and C, and D, and E; where every ending is only B, or C..., etc. In short, instead of 5 !, we have only five distributions.

3. Extended Ducci sequences

If we modify the original Ducci 1 sequence adding new element(or new elements to it ("a,b,c,d,e" or " $a, b, c, d, e, f, g, h, i, j, k$ "), we get new patterns. In the case of the extended Ducci sequence with five numbers, the repeating pattern is not only one but 15 lines long.
Besides the repeating sequence built form zeros and ones, there are variations with twos and zeros; threes and zeros, and so on. These lines are the components the repeating patterns, but they do not necessarily begin with the "111100" set. In some cases, the 1 s are replaced with $2 \mathrm{~s}, 3 \mathrm{~s}, 4 \mathrm{~s}, 5 \mathrm{~s}, 6 \mathrm{~s}$, and so on.

Extended Ducci with 5 components (examples):

step	numbers		numbers
0.	515213845		2325818391
1.	10617740		2562868
2.	411103330		545466066
3.	7123326		04854612
4.	622202319		48648612
5.	1623413		424242636
6.	141193		0036306
7.	1308611		0366246
8.	138252		363018186
9.	563311		61201230
10.	13086		612121824
11.	23825		606618
12.	15633		6601212
13.	41302		061206
14.	32322		661266
15.	11101	(repeating pattern)	06600 (repeating pattern)
16.	00110		60600
17.	01010		66606
18.	11110		00660
19.	00011		06060
20.	00101		66660
21.	01111		00066
22.	10001		00606
23.	10010		06666
24.	10111		60006
25.	11000		60060
26.	01001		60666
27.	11011		66000
28.	01100		06006
29.	10100		66066

Examining 1 million random example:

components	how many
0 and 1	881859
0 and 2	50449
0 and 3	59103
0 and 4	2523
0 and 5	875
0 and 6	3134
0 and 7	197
0 and 8	94
0 and 9	1394
0 and 10	30
0 and other	342

Extended Ducci with 6 and 7 components:

Ducci 6		Ducci 7	
step	numbers	step	numbers
1.	43348576268	0.	3525555809799
2.	291595664	1.	49302517296
3.	146415835	2.	463258159447
4.	823572321	3.	432217779471
5.	615434213	4.	2151072324642
6.	5532032117	5.	165624014421
7.	4833122142	6.	1157222610175
8.	1521917246	7.	46354167126
9.	6128154431	8.	11311295640
10.	647291325	9.	20193413429
11.	2322161219	10.	116133359
12.	11964717	11.	15152302848
13.	1813231016	12.	0132822447
14.	5111762	13.	131526222037
15.	6106143	14.	211421746
16.	445313	15.	972151324
17.	012221	16.	251321125
		17.	38119933
18.	110011 (repeating pattern)	18.	5320600
19.	010100	19.	2126605
20.	111100	20.	1140653
21.	000101	21.	0346122
22.	001111	22.	3125102
23.	010001	23.	2134121
		24.	1213111
		25.	1122000
		26.	0102001
		27.	1122011
		28.	0102100
		29.	1121100
		30.	0110101 (repeating pattern)
		31.	1011111
		32.	110000
		33.	0100001
		34.	1100011
		35.	0100100
		36.	1101100

Ducci 8:

1. 748546368737593
2. 41695521886
3. 353403166845
4. 3214313522310
5. 31311039291322
6. 282929101699
7. 267201967019
8. 191311317197
9. 61212126121212
10. 60066006
11. 60606060
12. 66666666
13. 00000000

Ducci 9:

While the repeating pattern of a Ducci with 8 numbers is similar to a Ducci 4's since this contains only zeros, the Ducci 9 represents a fundamental change. Examining to 50 million steps, we did not find any repeating pattern. If our conjecture is true, then there is no Ducci sequence with more than 8 starting numbers with identical repeating lines.

4. Appendix

1. Patterns of extended Ducci version: some examples

Number of the components

40:

80:

80:

2. Ducci versions: number of the steps to the repeating pattern

Regarding the numbers of the steps needed to reach the repeating pattern, the modified Ducci sequences can be divided into subcategories.
After about 20,000 repetition and with 10^{16} as the largest possible, randomly chosen number, the numbers of the steps to the repeating patterns where the starting four numbers is the $0^{\text {th }}$ step (the results rounded to one decimal):

2.2 (b d c a)	4.0	4.0	[a]
2.4 (c a b d)	4.0	4.0	[a]
4.2 (c d b a)	4.0	4.0	[e]
4.4 (b a c d)	4.0	4.0	[e]
3.2 (c b d a)	5.525726286314316	5.5	[b]
3.3 (b d a c)	5.519925996299815	5.5	[d]
5.3 (b c a d)	5.514025701285064	5.5	[e]
5.4 (c a d b)	5.525576278813941	5.5	[c]
5.1 (a d b c)	5.738736936846842	5.7	[b]
5.2 (d b c a)	5.748087404370218	5.7	[d]
2.1 (a b d c)	6.279413970698535	6.3	[b]
2.3 (d c a b)	6.280514025701285	6.3	[a]
4.1 (a c d b)	6.2689134456722835	6.3	[c]
4.3 (d b a c)	6.334516725836292	6.3	[d]
1.1 (a b c d)	6.87874393719686	6.9	[a]
1.2 (b c d a)	6.873843692184609	6.9	[a]
1.3 (c d a b)	6.879093954697735	6.9	[a]
1.4 (d a b c)	6.874943747187359	6.9	[a]
6.1 (a d c b)	6.875393769688484	6.9	[a]
6.2 (d c b a)	6.874843742187109	6.9	[a]
6.3 (c b a d)	6.881694084704235	6.9	[a]
6.4 (b a d c)	6.869993499674984	6.9	[a]
3.1 (a c b d)	5.740537026851342	7.4	[c]
3.4 (d a c b)	5.736536826841342	7.4	[e]

As it can be seen, the connection between the lengths and the categories ([a], [b]...) is usually weak or does not exist at all. The only manifest exceptions are the Ducci- 1 and Ducci- 6 versions: all of them belong to the 6.9 length and no other modified Ducci belongs to it. However, even the [a] category is inhomogeneous since this contains elements with 4.0 and 6.3 length as well

$2.2(\mathrm{~b} \mathrm{~d} \mathrm{c} \mathrm{a)}$	4.0	4.0	[a]
$2.4(\mathrm{c} \mathrm{a} \mathrm{b} \mathrm{d)}$	4.0	4.0	[a]
$2.3(\mathrm{~d} \mathrm{c} \mathrm{a} \mathrm{b)}$	6.280514025701285	6.3	[a]

The cases of the other categories are similar. See, for example, the [b] category:

$3.2(\mathrm{c} \mathrm{b} \mathrm{d} \mathrm{a})$	5.525726286314316	5.5	$[\mathrm{~b}]$
5.1 (a d b c)	5.738736936846842	5.7	$[b]$
2.1 (a b d c)	6.279413970698535	6.3	$[b]$

Sources:

- Chamberland, Marc: Single Digits. Princeton Univ. Press, 2015
- Programs were written by me.

